Skip to main content
Log in

Information and the Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of knowledge) really means during the measurement. On the other hand, Brukner and Zeilinger's definition of a new measure of information may lose its significance, when the spin measurement of an elementary system is treated realistically. Hence, the sum of the individual measures of information may not be a conserved value in real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. Zeilinger, “A foundational principle for quantum mechanics,” Found. Phys. 29, 631 (1999).

    Article  MathSciNet  Google Scholar 

  2. 2. Č. Brukner and A. Zeilinger, “Operationally invariant information in quantum measurements,” Phys. Rev. Lett. 83, 3354 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  3. 3. Č. Brukner and A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements,” Phys. Rev. A 63, 022113 (2001).

    Article  ADS  Google Scholar 

  4. 4. Č. Brukner and A. Zeilinger, “Information and fundamental elements of the structure of quantum theory,” e-print arXiv:quantph/0212084.

  5. 5. Č. Brukner, M. Żukowski, and A. Zeilinger, “The essence of entanglement,” e-print arXiv:quant-ph/0106119.

  6. 6. Č. Brukner and A. Zeilinger, “Young's experiment and the finiteness of information,” Phil. Trans. R. Soc. Lond. A 360, 1061 (2002), e-print arXiv:quant-ph/0201026.

    ADS  MathSciNet  Google Scholar 

  7. 7. Č. Brukner, M. Aspelmeyer, and A. Zeilinger, “Complementarity and information in delayed-choice for entanglement swapping,” e-print arXiv:quant-ph/0405036.

  8. 8. A. Zeilinger, “Bell's theorem, information and quantum physics,” in Quantum [Un]speakables, From Bell to Quantum Information, R. A. Bertlmann and A. Zeilinger, eds. (Springer, Berlin, 2002), 241–254.

    Google Scholar 

  9. 9. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

    MathSciNet  Google Scholar 

  10. 10. J. Řeháček and Z. Hradil, “Invariant information and quantum state estimation,” e-print arXiv:quant-ph/0111115.

  11. 11. E. F. Galvão, “Foundations of quantum theory and quantum information applications,” e-print arXiv:quant-ph/0212124.

  12. 12. C. G. Timpson, “On a supposed conceptual inadequacy of the Shannon information in quantum mechanics,” Stud. Hist. Phil. Mod. Phys. 34, 441 (2003).

    MathSciNet  Google Scholar 

  13. 13. C. G. Timpson, “The applicability of the Shannon information in quantum mechanics and Zeilinger's foundational principle,” in Phil. Sci. 70, 1233 (2002), Supplement: Proceedings of PSA.

    MathSciNet  Google Scholar 

  14. 14. A. Duwell, “Quantum information does not exist,” Stud. Hist. Phil. Mod. Phys. 34, 479 (2003).

    MathSciNet  Google Scholar 

  15. 15. M. J. W. Hall, “Comment on ‘conceptual inadequacy of Shannon information …’ by C. Brukner and A. Zeilinger,” e-print arXiv:quant-ph/0007116.

  16. 16. P. G. L. Mana, “Consistency of the Shannon entropy in quantum experiments,” Phys. Rev. A 69, 062108 (2004).

    ADS  Google Scholar 

  17. 17. B. Schumacher, “Information from quantum measurements,” in Complexity, Entropy And The Physics Of Information, Santa Fe Institute Studies in the Sciences of Complexity No. VIII, W. H. Zurek, ed. (Addison-Wesley, Redwood City, 1990), pp. 29–37.

    Google Scholar 

  18. 18. L. Brillouin, Scientific Uncertainty, and Information (Academic, New York, 1964), Part II.

    Google Scholar 

  19. 19. M. Arndt et al., “Quantum physics from A to Z,” e-print arXiv:quant-ph/0505187.

  20. 20. O. Lombardi, “What is information?” Found. Sci. 9, 105 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  21. 21. M. Horodecki, R. Horodecki, A. Sen(De), and U. Sen, “Common origin of no-cloning and no-deleting principles—Conservation of information,”e-print arXiv:quant-ph/0407038.

  22. 22. L. Floridi, “Open problems in the philosophy of information,” Metaphilosophy 35, 554 (2004).

    Article  Google Scholar 

  23. 23. K. M. Sayre, “Information theory,” in Routledge Encyclopedia of Philosophy, Version 1.0 (Routledge, London and New York,1998).

    Google Scholar 

  24. 24. F. I. Dretske, Knowledge and the Flow of Information (MIT Press, Cambridge, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shafiee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafiee, A., Safinejad, F. & Naqsh, F. Information and the Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation. Found Phys Lett 19, 1–20 (2006). https://doi.org/10.1007/s10702-006-1845-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-1845-0

Key words:

Navigation